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A discrete map for the dripping faucet dynamics
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Abstract

A discrete map for the time intervals between drops falling off a leaky tap is presented. The map reproduces the
dynamics observed in real systems. Attractors and bifurcation diagrams similar to experimental ones are shown and
discussed. q 1999 Elsevier Science B.V. All rights reserved.
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The behavior of dripping liquid from a faucet has
been experimentally investigated by several authors
w x1–11 . A wide class of phenomena has been re-
ported, including chaos, thus the dripping faucet can
be considered a sort of ‘model system’ of complex
behavior. In the experiments the time intervals be-
tween successive liquid drop detachments at differ-
ent values of flow rate are measured. The data are
displayed plotting time-delay diagrams and dripping

Žspectra bifurcation diagrams with flow rate as con-
. w xtrol parameter . Theoretical studies 12–17 are es-

sentially based on the variable-mass oscillator of
w xShaw 1 , where a drop hanging from a nozzle is

described as a variable mass attached to a spring and
subjected to the gravitational force and to a friction
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force. Substantial improvements over this model were
w x w xpresented in previous papers 14 and 15 , where the

importance of the discontinuity at the critical point
Ž . w xduring the breaking-off is emphasized 18 . Retain-
ing this suggestion and considering the behavior of

w xthe forming drop in real systems 8 , we propose in
w xthis paper a discrete map 19 , which considerably

w xsimplifies the mapping technique of Ref. 16 , where
a numerical solution of a nonlinear equation is re-
quired. The discrete map reproduces the features
detected experimentally for a leaky tap, such as, for
example, periodicity, period-doubling, multiperiodic-
ity, quasiperiodicity, pitchfork and tangent bifurca-
tion, Hopf bifurcation, inverse cascade, coexisting
attractors, strange attractors, and so on. The consid-
erations that are at the basis of model are also
discussed, together with the possible improvements.
As far as we know, so far no physically based maps
for the dripping faucet have appeared in the litera-
ture.
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w xIn Ref. 16 the centre of mass of a drop hanging
from an orifice is approximately described by the
equation

yT r M ŽT .X T s AsinV T TqBcosV T T eŽ . Ž . Ž .

qM T rK , 1Ž . Ž .

where

V 2 T sKrM T , 2Ž . Ž . Ž .

Xsxrx is the displacement normalized to the criti-c

cal displacement x , T is the time normalized toc
Ž .1r2ts x rg , g is the acceleration of gravity, M isc

the mass normalized to msbt , b is the coefficient
of friction, K is a spring constant normalized to brt

and F represents the flow rate normalized to b.
The mass is supposed to vary linearly with the

time

M T smqFT , 3Ž . Ž .

where m represents the mass of the residue after the
falling of the previous drop.

The breaking away of the drop is simulated by
reducing the mass, at the critical point X s1, by ac

quantity proportional to its momentum

DMsaMV , 4Ž .

Ž .where a is a parameter. The condition 4 was first
w x w xused in Refs. 12,13 and independently in Ref. 14 .

Experimentally, at threshold, the forming drop of
mass M undergoes a stretching forming a neck
w x5,6,8 , so that it is reasonable to suppose that, after
the fall-off of the drop, the residual restarts with
velocity V at the pointc

DM
X s1yR , 5Ž .0 M

where

1r33DM
Rs 6Ž .ž /4p D

represents the drop radius and D the liquid density
normalized to mrx 3.c

Thus a mapping, that is the series of time inter-
vals between each drop, can be obtained by solving
numerically the equation

X T s1. 7Ž . Ž .
Ž . Ž .Eqs. 5 and 6 are the basis of the ‘spherical

w xdrop model’ proposed in Ref. 14 .
Ž .Eq. 1 approximates well enough the behavior of

the real drop in formation, as one can see by compar-
Ž .ing the plot in Fig. 1 continuous curve with those

w xreported in Fig. 7 of Ref. 8 , where it is shown that
the centre of gravity of the fluid oscillates like a
damped oscillator as it reaches the critical point, then
a break-off of a drop occurs. We emphasize that the
nonlinearity required to yield chaos is the sudden
change at the threshold. Therefore it is not essential

Ž .that X T follows the actual path of the drop centre
of mass, but only that it reproduces dynamical ef-

w xfects around the critical point 16,17 . In Fig. 1, the
Ž .broken line represents the last term of Eq. 1 that

Ž . wtypically follows the mean pattern of X T as given
Ž .xby Eq. 1 . Thus, in order to obtain a crude approxi-

mation of drop displacement, one could put at the
critical point

mqFT
X T f s1, 8Ž . Ž .

K

Ž .and reversing it we obtain T s Kym rF. If Eq.c
Ž . Ž .8 is used together with the derivative of Eq. 1 at
X one gets bifurcation diagrams which are typicalc

Ž . Ž .Fig. 1. Plot of the position X T continuous curve and of its
Ž . Ž .second term broken line in Eq. 1 .
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of complex behavior, with attractors showing a
Žsmaller dimensionality as this approximation corre-

.sponds to a very large coefficient of dissipation .
This is caused also by the omission of the depen-

Ž .dence of X T on V sV , which represents both thec 0

velocity of the drop at the critical point and the
velocity of the residue at X . In fact the dripping0

faucet behaves as a sort of relaxation oscillator,
where self-stimulated oscillations originate between
successive drops. Therefore it is essential, in order to

Ž .recover dynamics, that X T be also a function of
V . Insertion of V accounts for the difference of the0 0

displacement from its mean value as given by Eq.
Ž .8 . It seems reasonable to assume an inverse depen-

dence between the drop formation time and its initial
velocity; thus we can write

Kym
T f . 9Ž .c FqV0

This approximation is equivalent to adding to Eq.
Ž .8 the term V TrK , which changes the slope of the0

straight line representing the mean displacement of
w xeach drop, as occurs in real experiments 8 . Adding

Ž .this corrective term to Eq. 8 one obtains, at the
critical point, an approximated expression for the

Ž .displacement X T that can be reversed in order to
Ž .obtain the dripping time T . Thus Eq. 9 gives ac

Ž . ŽFig. 2. Bifurcation diagrams plotted against flow rate F. On each frame the values of the pair K ,a are indicated. 50 points after a
. 3transient of 1000 drops are used at each value of F, and 25=10 points for one whole plot.
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Ž . 4 Ž 3.Fig. 3. Return maps T versus T . On each plot the values of K ,a ,F are inserted; 10 points are used after a transient of 10 . Anq 1 n
Ž . Ž . w xsimilarity of qualitative behavior with some experimental attractors can be observed, see Fig. 7 f and 11 d of Ref. 3 .

convenient valuation of the formation time of a drop
with staring mass m and speed V .0

The map can be built as follows. Changing a little
the notations, we call m , Õ and x the initial mass,n n n

speed and position of a drop n, then T as given byn
Ž .9 represents the time interval between the actual
drop detachment and the previous one. Let V be then

Ž .time derivative of Eq. 1 calculated at T , and Mn n

the mass of the drop at the critical point, then

Kymn
T s ; V sV m ,Õ , x ,T ;Ž .n n n n n nFqÕn

M sm qFT . 10Ž .n n n

Ž .Eq. 10 express the relations, for each forming drop,
between the time T , the speed V and the mass Mn n n

Ž .at the critical point X s1 as function of then
Ž .corresponding starting quantities t s0 not marked ,n

Õ , m and x .n n n
Ž . Ž .By using Eqs. 4 and 5 the following map is

obtained

1r33aM Vn n
x s1y , m sM 1yaV ,Ž .nq1 nq1 n nž /4p D

Õ sV , 11Ž .nq1 n

where m , Õ and x represent the mass,nq1 nq1 nq1

speed and position of the residue after the fall-off of
the drop n, namely the corresponding initial condi-

Ž .tions of the drop nq1 .
w Ž .xSimulations are performed using T Eq. 10 ,n

which is the quantity measured in experiments.
In Fig. 2 typical bifurcation diagrams obtained

Ž .with the map 11 show complex dynamical behavior
Ž .as the control parameter flux is varied. The plots

correspond to different values of the parameters
Ž .K ,a with the value of the parameter D kept fixed
at 1. 1 Periodic behavior, period-doubling, crisis and
chaos are evidenced in the diagrams. We can observe
some difference between these dripping spectra. At
high values of K multiperiodic behavior extends
over wide regions of spectrum and period doubling

1 Moreover, for each flow rate F, return maps are always
Žcalculated using the same initial conditions x s0, Õ s0.001,0 0

.m s0.01, if not differently indicated . The reason is that the0

model can produce coexistence of attractors. Bifurcation diagrams
are instead calculated by retaining, for the first drop at a given F,
the values calculated from the last drop of the previous F: this is
reminiscent of experimental diagrams obtained by emptying a
large reservoir.
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Ž . Ž . Ž .Fig. 4. Bifurcation diagrams showing hysteresis Ks30, as10 . a F is increased; b F is decreased.

dominates; at low values of K inverse cascade is
observed. High values of a increase the variety of
transitions and contract the region of flow rate after
which the dripping transforms into continuous flow.

Besides exhibiting transitions typical of the real
dripping faucet, the model also yields strange attrac-
tors similar to the experimental ones. In Fig. 3
examples of return maps are plotted which qualita-
tively reproduce behaviors found in the real system,

w xsuch as those reported in Figs.7 and 11 of Ref. 3 .

Hysteresis is presented in Fig. 4 where different
behaviors are observed depending on whether F is
increased or decreased. This feature has been found
in the experimental systems. The variable-mass oscil-
lator shows hysteresis thanks to insertion of a re-
bound for the residue at the breaking-off point, as

Ž .that represented by Eq. 5 .
A transition from period-1 behavior to chaos

through tangent intermittence is illustrated in Fig.
Ž .5 a by means of a time series representation around

Ž . Ž . Ž .Fig. 5. a Tangent intermittence between chaos and period-1 attractors Ks9, as9, Fs0.3778 . b The sequence of drip intervals
Ž .shows a sudden change from two chaotic bands to periodic regime Ks4, as10, Fs0.01 . Both behaviors have been found in the

w xexperimental time series 6 .
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Fig. 6. Dripping spectrum showing an Hopf bifurcation.

the bifurcation point. An uncommon feature of insta-
Ž .bility is shown in the time series of Fig. 5 b , where

two chaotic intermittent bands abruptly regularize on
a period-1 behavior. A drastic change in the mean
drop frequency is observed: analog behavior has

Žbeen visualized for a real dripping faucet see Fig.
Ž . w x.8 b of Ref. 6 .

Closed loops attractors are found at low values of
Ž .K ,a . Inspection of the corresponding spectra shows
transitions such as that reported in Fig. 6, which is
characterized by an evolution from a period-4 to a
period-1 frequency through a quasiperiodic develop-

Ž .ment an Hopf bifurcation . For Ks4 and as4 an
evolution from a period-5 to a period-1 frequency

w xhappens, similar to that reported in Ref. 7 for the
real leaky tap.

The preliminary results presented show that the
Ž .map 11 produces a large class of phenomena which

reproduce most of the dynamics of a dripping faucet.
The use of a map reduces the computational time,
whereas the physical meaning of parameters remains
nearly unchanged. Moreover, the method presented
here gives concrete and useful suggestions for build-
ing, in the spirit of mass-on-a-spring model, a dis-
crete map convenient for a close description of be-
havior of actual leaky tap. On this subject some
warnings should be made. First, the link between
model and physical parameters is not precisely estab-
lished; it can be, for example, that a or K have
some dependence on the flow rate. Preliminary stud-

w xies 20 and results from fluid dynamical calculations
w x21 show indications favorable to this hypothesis.
Second, the physical mechanism which simulates the

Ž . Ž .detachment of the drop, modeled by Eqs. 4 and 5 ,
is crucial in order to yield chaos: indeed, it produces
the appropriate correlations between successive
drops, but unlike conditions at the threshold can give

w xdifferent results 14,15 ; still it seems clear that the
rebound condition does depend somehow on the
mass of the falling drop. Finally, the approximation
for the position of growing mass at the critical point
which allows one to get a formula for the drop

w Ž .xformation time here Eq. 9 demands further analy-
ses. Studies are in progress in order to investigate
these points.
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