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Floating under a levitating liquid

Benjamin Apffel1,3, Filip Novkoski1,3, Antonin Eddi2 & Emmanuel Fort1 ✉

When placed over a less dense medium, a liquid layer will typically collapse 
downwards if it exceeds a certain size, as gravity acting on the lower liquid interface 
triggers a destabilizing effect called a Rayleigh–Taylor instability1,2. Of the many 
methods that have been developed to prevent the liquid from falling3–6, vertical 
shaking has proved to be efficient and has therefore been studied in detail7–13. 
Stabilization is the result of the dynamical averaging effect of the oscillating effective 
gravity. Vibrations of liquids also induce other paradoxical phenomena such as the 
sinking of air bubbles14–19 or the stabilization of heavy objects in columns of fluid at 
unexpected heights20. Here we take advantage of the excitation resonance of the 
supporting air layer to perform experiments with large levitating liquid layers of up to 
half a litre in volume and up to 20 centimetres in width. Moreover, we predict 
theoretically and show experimentally that vertical shaking also creates stable 
buoyancy positions on the lower interface of the liquid, which behave as though the 
gravitational force were inverted. Bodies can thus float upside down on the lower 
interface of levitating liquid layers. We use our model to predict the minimum 
excitation needed to withstand falling of such an inverted floater, which depends on 
its mass. Experimental observations confirm the possibility of selective falling of 
heavy bodies. Our findings invite us to rethink all interfacial phenomena in this exotic 
and counter-intuitive stable configuration.

Maintaining a liquid upside down is challenging but various situations 
in which the inverted liquid can be sustained are known. In the case of a 
limited surface size, capillary forces have a stabilizing effect21–23. Alterna-
tively, for large but thin liquid layers suspended under a plate, capillarity 
opposes gravity24,25. In the latter case, the liquid interface does not stay 
flat but is destabilized in a regular pattern of hanging droplets. This insta-
bility driven by gravity, known as the Rayleigh–Taylor instability, occurs 
at the interface between two fluids whenever a denser fluid is placed over 
a lighter one1,2. Several approaches have been used to stabilize liquid 
layers, such as temperature gradients3, electric4 or magnetic fields5, 
rotational motion6 and vertical vibrations7–13. When using vertical vibra-
tions, the amplitude of the vibration must increase with the surface size. 
The maximum amplitude is set by the triggering of another instability— 
the Faraday instability—which tends to destabilize fluid surfaces above a 
certain acceleration threshold26,27. However, this threshold can be raised 
by increasing the fluid viscosity28. Hence, the volume of the upside-down 
liquid can be large, provided the viscosity is suitably chosen.

The vertical vibration of a fluid also induces air bubbles to sink below 
a certain depth in the liquid, defying the well known Archimedes’ prin-
ciple14–20. This effect has been studied for industrial applications in gas 
holdup and mixing in bubble column reactors29.

Here we investigate the effect of the vertical vibrations on the buoy-
ancy of bodies immersed in levitating liquid layers and in particular at 
their lower interface. Our experimental setup consists of a plexiglass 
container fixed on a shaker that vibrates vertically at a frequency of  
ω/(2π) and with amplitude A (Fig. 1a). The container is filled with silicon 
oil or glycerol with high viscosity (typically ranging from 0.2 Pa s to 
1 Pa s) to increase the Faraday instability threshold8. Though they have 

different physical properties, both liquids exhibit similar behaviour 
provided that their viscosity is large enough. In particular, the wetting 
conditions appear to have limited influence, owing to dynamical effects 
on the contact line. Air bubbles are observed to sink when placed below 
a critical depth. This behaviour, which defies standard buoyancy, can 
be explained by a simple model that takes into account the kinetic 
force—also called the Bjerknes force30—that is exerted on the bubble 
in the oscillating bath14,16 (see Supplementary Materials and Supple-
mentary Video 1 for details). By expanding an already sunken bubble, 
we create an air layer trapped below a levitated liquid layer (Fig. 1b and 
Supplementary Video 2). The lower interface of the liquid layer is sta-
bilized by the vertical shaking, preventing the release of the trapped 
air. This air layer acts as a vertical spring loaded with the liquid mass 
placed upon it and driven by the shaker (Fig. 1c). It can be modelled by 
a driven damped harmonic oscillator z Γω z ω z Aω ωt¨ + 2 ˙ + = cos( )res res

2 2  
where ωres is the resonance frequency of the air layer and Γ is the damp-
ing ratio due to the shearing induced by the relative motion between 
the levitating liquid layer and the bath walls (see Supplementary Infor-
mation). In the laboratory frame (denoted by subscript ‘l’), the normal-
ized oscillation amplitude Al(ω)/A and its associated relative phase 
ϕl(ω) − ϕ compared to the shaker clearly show the expected resonance 
behaviour (Fig. 1c, d). The air layer thus enables the enhancement of 
the excitation amplitude of the shaker by more than one order of mag-
nitude. Near resonance, the amplitude is high enough to excite the 
Faraday instability on both sides of the fluid layer (see Fig. 1d, inset, 
and Supplementary Video 3). The resulting ‘rain’ emitted from the 
lower interface induces a thinning of the fluid layer which can be 
avoided by reducing the excitation amplitude. Provided that the  
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Fig. 1 | Levitating liquid layer stabilized by the Kapitza effect.  
a, Experimental setup, composed of a plexiglass container of various sizes  
(up to 20 cm in width) attached on a vertically oscillating shaker with amplitude 
A and frequency ω/(2π). The liquid is either glycerol or silicon oil with high 
viscosity (typically 0.5 Pa s). The bubbles are created by injecting air with  
a syringe through a long needle. We operate at room temperature (20 °C).  
b, Image sequence (left to right, top to bottom) of the creation of the air layer 
obtained by injecting air at the bottom of the oscillating liquid bath through a 
needle. The sinking bubble grows until it completely fills the bottom of the 
bath (see Supplementary Videos 1, 2). c, d, Vertical amplitude of the liquid layer, 
Al/A (c), and the relative phase shift ϕl − ϕ of the liquid oscillations compared 
with that of the shaker (d) as a function of the excitation frequency ω/(2π). 
Insets, schematic of the spring–mass system composed of the air layer loaded 

with the levitating liquid (c) and image of the Faraday instability that is 
triggered on the two opposite surfaces of the levitating liquid layer of silicon oil 
(d; see Supplementary Video 3). The experimental data (full circles) are fitted 
by the spring–mass model with fitting parameters ω/(2π) = 103 Hz and Γ = 0.04 
(dashed line; see Supplementary Information for details). e, Digitally 
colourized three-quarter views of the oscillating containers with one and two 
levitating liquid layers of silicon oil (see Supplementary Video 4). f, Top, 
Digitally colourized side views of the levitating bath in containers of widths 
L = 2 cm (left) and L = 18 cm (right); see Supplementary Video 5. Bottom, critical 
liquid  velocity v l

∗ = Alω for Kapitza stabilization of the liquid layer as a function 
of the width L of the container: experimental data (circles) and model 

∗v gL= /πl  (dashed line). Error bars correspond to extremal values over five 
experiments.
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spring–mass oscillation is properly tuned, there is no restriction on 
the number of levitating layers that can be sustained on top of one 
another (see Fig. 2e and Supplementary Video 4).

As mentioned, the vertical vibrations have a stabilizing effect on the 
lower fluid interface. This can be interpreted as a Kapitza effect, which 
is the dynamical stabilization of an inverted pendulum by vertical shak-
ing31,32. Solving the Bernoulli equation for the fluid shows that the 
interface height ζ(k) at the spatial wavenumber k behaves like an invert
ed pendulum. The spatial mode satisfies ̈ζ ω k A k ω ζ+ [ ( ) + ( )/2] = 00

2
l
2 2 2   

with ω k gk γk ρ( ) = − + ( )/0
2 3

l  the gravito-capillary dispersion relation 
with inverted gravity, and ρl the density of the liquid and γ its surface 
tension. Without vibrations, the oscillator is unstable for small enough 
k ω k( ( ) < 0)0

2 , leading to the Rayleigh–Taylor instability, whereas large 
wave numbers are stabilized by capillarity. The last term in the equation 

arises from the modulation of the effective gravity. In a gravitational 
regime, the stabilization is reached for wavenumbers satisfying 
k g A ω> 2 /( )l

2 2  (see Supplementary Information). The limited width L 
for the bath sets a maximum limit for the observed excitable wavenum-
ber k > 2π/L (only antisymmetric modes satisfying volume conservation 
are considered). As a consequence, the stability of the interface is 
obtained for oscillating liquid velocities vl = Alω above a critical veloc-
ity ∗v gL v= /π <l l . There seems to be no size limit for stabilization. The 
maximum levitated mass was 0.5 l in a 12 × 12 cm2 container, and the 
maximum width achieved was 20 cm. The limitations in mass are due 
only to the shaker. In addition, no decay in time was observed and the 
layers remained stable for arbitrarily long times. Figure 1f shows the 
critical oscillating velocity vl

⁎ needed to stabilize baths with widths L 
up to 18 cm (the insets show views of levitating layers for bath widths 
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Fig. 2 | Archimedes’ principle over and under a levitating liquid layer.  
a, Schematic of the force balance at the two opposing interfaces; the buoyant 
force cancels the weight of the immersed bodies, where Vim is the immersed 
volume. b, Typical profile of the static potential (blue) along the vertical 
direction z neglecting the dynamical effects. Two equilibrium positions appear 
at each interface; the lower equilibrium is unstable. Insets, magnifications of 
the potential near the equilibrium positions with the addition of the dynamical 
stabilizing effect (red line; see Supplementary Information). c, Digitally 
colourized side views of plastic spheres 2 cm in diameter, floating upwards and 

downwards with lower (left) and higher density (right). d, Time-averaged 
equilibrium positions for spheres 2 cm in diameter with varying masses, as a 
function of the immersed volume at the upper interface (blue squares) and the 
lower interface (red diamonds). Black circles give the equilibrium positions 
obtained without shaking. The dashed line is given by the Archimedes’ 
principle with experimentally measured ρl = 1.1 kg l−1 for glycerol. The error bars 
correspond to extremal values over three measurements. e, Boats floating 
above and below a levitated liquid layer (see Supplementary Video 6; digitally 
colourized).
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L = 2 cm and L = 18 cm; see Supplementary Video 5). Other effects might 
have an influence on the stability, such as friction or the flows formed 
at the boundary, but their influence is limited (see Supplementary 
Information).

We now focus on objects floating at the inverted interface of the 
levitating fluid layer. Archimedes’ principle states that the upward 
buoyant force exerted on an immersed body, whether fully or partially 
submerged, is equal to the weight of the displaced fluid. Although it 
may seem counterintuitive, the transpose symmetric position at the 
lower interface (see Fig. 2a) also exhibits an upward buoyant force 
equal to the weight of displaced liquid. Figure 2b shows the typical 
potential exerted on a floating body without taking into account the 
dynamical effects (see Supplementary Information for details). The 
two equilibrium positions associated with each interface are clearly 
visible. However, although the upper position is stable, the lower is 
not: pushing the body down (or up) would make it fall (or float to the 
upper interface). Taking into account the dynamical effect—that is, the 
time-averaged effect of the oscillations—provides an additional stabi-
lizing dynamical potential around the two equilibrium positions (see 
Fig. 2b, inset). Averaged small displacements Zb of the floater around 
the two equilibrium positions satisfy the same dynamical equation 

̈Z ω α Z+ (1 + ) = 0b b
2

b , where ωb is the angular frequency associated with 

the buoyancy force and ( )α =
ω A ω

g2

2
lb

2

 is the correction induced by the 

averaged dynamical effects (see Supplementary Information for 
details). Although the dynamical effects increase the stability of the 
equilibrium at the upper interface (ω > 0b

2 , α > 0), the unstable static 
equilibrium at the lower interface ω( < 0)b

2  is stabilized by the dynami-
cal effects (α < 0). It is interesting to note that similar dynamical stabi-
lizations were observed with a washer mounted on a vibrated inverted 
pendulum20. The floater stability is reached for liquid velocity vl above 
a critical value given by v g ω v= 2 /| | <b

⁎
b l . It is thus possible to have 

floating bodies with varying densities above and below the levitating 
liquid layers (see Fig. 2c). Hence the vibration not only gives stability 
of the lower horizontal interface of a liquid but also permits vertical 
stabilization of the unstable equilibrium position that a floater would 
experience on such interface. This dynamical ‘anti-gravity’ enables 
boats to float on both interfaces (Fig. 2e, see Supplementary Video 6)33. 
Note that the drag force induced by secondary flows—which we see as 
recirculation in the liquid layer—should not considerably change the 
vertical equilibrium position (see Supplementary Video 2 and Sup-
plementary Information).

These stability conditions suggest that the critical fluid velocity to 
stabilize a floater vb

⁎  and the liquid layer vl
⁎ are different, and that suf-

ficiently massive floaters should fall before the layer collapses v v( > )b
⁎

l
⁎ . 

We performed the experiments in silicon oil with spherical floaters of 
increasing mass; the heaviest floater had almost neutral buoyancy 
(Fig. 3). In contrast to light floaters, which fall with the liquid layer as 
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Fig. 3 | Stability of the floater and the liquid layer. Critical velocities for the 
stability of the liquid layer v l

⁎ and for the floater vb
⁎  as a function of the floater 

mass mb. The experiments are performed in a 4 × 5 cm2 container with silicon oil 
and spherical floaters with a diameter of 2.5 cm with various masses. The 
model (blue line), which is based on dynamic stabilization, uses the 
experimentally measured liquid density, ρ = 0.92 kg l−1, and no adjustable 

parameters. Above a certain floater mass v v>b
⁎

l
⁎ (blue area) the floater can fall 

while the liquid layer remains stable. The error bars correspond to extremal 
values over three measurements. The dashed red line is the mean value of the v l

⁎ 
measurements. Inset, image sequences (left to right) of the experiment 
showing the layer falling at v l

⁎ for a floater mass of mb = 4.8 g and showing the 
floater falling at vb

⁎  for mb = 6.6 g (see Supplementary Video 7).
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the excitation amplitude is decreased, heavier floaters fall before the 
levitating layer is destabilized (see Fig. 3, inset, and Supplementary 
Video 7). The theoretical critical velocity vb

⁎  can be exactly computed 
for spheres without any adjustable parameters (solid blue line). The 
expected range of masses for which v v>b

⁎
l
⁎ is consistent with the exper-

imental findings (Fig. 3, blue shaded region) and the values vb
⁎  are in 

reasonable agreement. Discrepancy occurs for almost neutrally buoy-
ant floaters (as also for buoyant equilibrium position). In this limit, new 
phenomena are observed, such as a small relative motion of floaters 
with respect to the surrounding fluid layer, which seems to have an 
important role in the floater equilibrium.

This counter-intuitive upside-down buoyancy phenomenon suggests 
that the stabilization of Rayleigh–Taylor instability through vibrations 
can be considered not only in itself but also as offering opportunities 
for new experiments in unexplored conditions. We anticipate that 
phenomena that occur at the interface between air and liquids—such 
as transport and segregation—could be investigated and reformulated 
in this exotic configuration.
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