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In a recent article,1 Ong described how saddle-node bifur-
cations arise in a simple system comprised of two identical
springs connected in a symmetrical V-shaped configuration
to a mass m, such as that depicted in Fig. 1. Readers may be
interested to note, however, that the same spring-mass sys-
tem can also be used to study both perfect and imperfect
pitchfork bifurcations.2,3

To see how this works, recall that the equilibrium posi-
tions y in Ong’s system are given by solutions to1

f � 2ky 1� l0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
" #

¼ 0; (1)

where y is the vertical equilibrium position of the mass, f is a
forcing parameter (which includes gravity), 2x is the hori-
zontal separation between the points securing the springs, k
is the spring constant, and l0 is each spring’s natural length
(see Fig. 1). Ong studied saddle-node bifurcations by explor-
ing how the number of possible equilbrium configurations
changes if the forcing f is varied, with x, k, and l0 held fixed.
Here, however, we study pitchfork bifurcations by exploring
how the number of possible equilibrium configurations
changes if the separation x is varied instead, with f, k, and l0
held fixed. As we shall see, pitchfork bifurcations arise in
two different ways depending on the value of the forcing f.

If f¼ 0, then Eq. (1) may be solved to give either

y ¼ 0 or y ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
0 � x2

q
; (2)

where the latter solutions are possible only if

x � xc; where xc ¼ l0: (3)

This change in the number of possible equilibria when x¼ xc is
called a perfect pitchfork bifurcation, as shown schematically

in Fig. 2. Notice that if x > l0, then the springs are under ten-
sion, such that only one equilibrium is possible, with the mass
at the centre y¼ 0. If x < l0, however, then three equilibria are

permitted: two stable, symmetric equilibria y ¼ 6½l2
0 � x2�1=2

,

with the springs relaxed at the natural length l0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
;

and one unstable equilibrium y¼ 0, with the springs pushing
against each other. Observe from Fig. 2 that transitions between
the stable equilibria are continuous at x¼ xc.

If f> 0, then it is not easy to solve Eq. (1) for y, and the
situation becomes more complicated. One can, however,
demonstrate that the number of possible equilibria changes
from three to one (or vice versa) whenever x passes through
the critical value3

x ¼ xc; where xcðf Þ ¼ l0 1� ðf=2kl0Þ2=3
h i3=2

: (4)

In this case, the change in the number of possible equilib-
rium configurations when x¼ xc is called an imperfect pitch-
fork bifurcation (see Fig. 3).

It may be shown for the imperfect pitchfork bifurcation
that increasing x through xc (e.g., by pulling the points of
attachment apart from one-another) can lead to the system
shifting from a stable equilibrium configuration y < �yc < 0
(with the mass above the springs) to the one with 0 < y � ys

(mass below the springs), where3

yc ¼ l
2=3
0 x4=3

c � x2
c

h i1=2

(5)

and

ys ¼ yc ðl0=xcÞ2=3 þ ð1þ y2
c l

2=3
0 =x8=3

c Þ
1=2

h i
: (6)

Fig. 1. Symmetric V-shaped spring-mass system (Ref. 1); it is assumed that

the mass m is constrained to move in the y-direction only (e.g., by sliding on

a smooth vertical wire). The y-axis is positive in the “downward” direction.

Fig. 2. Possible equilibrium positions y as a function of x when f¼ 0 (solid

lines depict stable equilibria, dashed lines unstable) (Ref. 3), with the y-axis

positive in the “downward” direction (as in Fig. 1). The springs are relaxed

at the natural length l0 everywhere on the semi-circle defined by

x2 þ y2 ¼ l20. The perfect pitchfork bifurcation occurs at x ¼ xc ¼ l0.
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Such transitions between equilibria take the springs from a
compressed state (with the downward force supported by the
springs’ reaction) to an extended state (with the downward
force supported by the springs’ tension) and are, therefore,
discontinuous at x¼ xc (see Fig. 3). Note that once the sys-
tem has shifted from �yc to ys, decreasing x through xc (e.g.,
by pushing the points of attachment closer together) will
simply lead to the mass sinking further on the y> 0

equilibrium; it will not make the mass “jump” back to the
y < �yc < 0 configuration. In this respect, the transition at
xc is “non-reversible.”

Ultimately, it may be shown that the saddle-node bifurca-
tions discussed by Ong,1 and the pitchfork bifurcations
described above, are both features of a cusp catastrophe,2,3

meaning that the system exhibits a wider range of threshold
phenomena than it has been possible to summarise in our
Comment here (see, e.g., our supplementary analysis pub-
lished in another context).3 Given such rich behaviour, there-
fore, the simplicity of Ong’s system makes it an ideal
candidate for developing undergraduate practical work on
non-linear effects more generally. Indeed, the presence of bi-
stability suggests that if friction is considered, then driving
the system may even lead to chaotic behaviour analogous to
that exhibited by a Duffing oscillator.4 We look forward to
investigate such possibilities in future publications.

a)ORCID: 0000-0002-8364-8085.
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Fig. 3. Possible equilibrium positions y as a function of x for a fixed value of

f> 0 (solid lines depict stable equilibria, dashed lines unstable) (Ref. 3), with the

y-axis positive in the ‘downward’ direction. The imperfect pitchfork bifurcation

occurs when x ¼ xcðf Þ; thus, if the system is initially in a stable equilibrium

with y< 0, then increasing x through xc will result in the equilibrium shifting dis-

continuously from y ¼ �yc to y¼ ys (arrows). Crossing the semi-circle x2 þ
y2 ¼ l2

0 (dotted line) corresponds to the springs changing from a compressed

state (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
< l0) to an extended state (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
> l0).
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