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The Wirtz pump is not only an excellent example of
alternative technology, using as it does the kinetic
energy of a stream to raise a proportion of its water,
but its mathematical modelling also poses several
intriguing problems. We give some history of the
Wirtz pump and describe its operation. Taking a
novel dynamical systems approach, we then derive
a discrete mathematical model in the form of a
mapping that describes its hydrostatic behaviour. Our
model enables us to explain several aspects of the
behaviour of the pump as well as to design one
that gives approximately maximal, and maximally
constant, output pressure.

1. Introduction
A first encounter with the Wirtz pump can hardly fail to
impress: essentially, a rotating spiral of pipe, mounted
in a vertical plane and arranged so that one open end
dips below the surface of a reservoir of water once per
revolution, easily adapted to be driven by water power,
can be used to pump a useful quantity of water to a
height of several metres. The pump requires only one
critical component, a rotating coupling, which connects
a turning pipe to a stationary one aligned along the
same axis, in a watertight, low-friction manner. The first
author came across an account of this 1746 invention of
H. Andreas Wirtz, a Zurich pewterer, several years ago
in [1], and was inspired to build one—the result can be
seen in figure 1. Eight years later, this pump, which is
attached to the spokes of a waterwheel, is still providing
reliable irrigation at a height of 5.5 m above a stream, at a
rate of about 1 l min−1.

The pumps considered in the literature fall into two
categories: helical pumps, in which the pipe is formed
into a series of turns all of the same radius (the pipe may
be imagined to be wound around a cylinder) and spiral
pumps, an essentially planar arrangement in which the

2018 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. Practical Wirtz pump in the stream at the bottom of the first author’s garden. The pump itself is the spiral of pipe,
which has been attached to the spokes of an undershot waterwheel. Thewater flows from left to right and its speed is increased
by the narrowing of the stream at this point. The rotating coupling can be seen in the horizontal copper pipe between the
waterwheel and the short, round wooden post. (Online version in colour.)
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Figure 2. Operation of the spiral Wirtz pump. All three figures show sections of pipe containing water (dotted) and air. In (a),
we have the simplemanometer, and in (b), three suchmanometers connected in series. In (c), we show the same configuration
as (b) but arranged as a three-turn Archimedean spiral—one in which the radius,ρ , varies linearly with angleψ (i.e. in polar
form, ρ = kψ with k constant). The spiral rotates anticlockwise and its open end, on the right, is sometimes submerged in
the water whose surface is shown as a dashed horizontal line.

radius of successive turns decreases. Our main interest is to take a—we believe, novel—dynamical
systems approach to modelling the spiral case, which we refer to as the Wirtz pump, because it
is likely to resemble Wirtz’s invention most closely. Other authors have used the terms ‘spiral
pump’, ‘coil pump’ or ‘manometric pump’ to refer to both spiral and helical geometries.

We now give a pictorial explanation of how a rotating spiral of pipe can function as a pump.
Figure 2 shows three configurations of pipe containing one or more ‘plugs’ of water. Figure 2a
shows a U-tube manometer, the simplest pressure gauge, familiar from school physics. Pascal’s
Law, which we discuss in §2a, tells us that the pressure difference p1 − p0 is proportional to the
height difference, �h, between the surfaces of the water in the right and left limbs, respectively.
Taking this idea further, figure 2b shows three such manometers connected in series, this
arrangement giving an increased pressure difference, p3 − p0, proportional to �h1 +�h2 +�h3.
Finally, in figure 2c, we imagine the previous configuration to be ‘folded’ around alternate vertical
limbs, giving the spiral configuration shown, with p3 − p0 again being proportional to the sum
of the height differences. In practice, the spiral would be likely to consist of many more than
three turns.
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We can see from the foregoing the importance of the alternation of plugs of air (a low-density
fluid) with plugs of water (high-density fluid) to the working of the pump: it is the fact that the
high-density fluid is displaced that generates pressure within the low-density fluid, and a spiral
pipe can only be filled in this way if its open end is sometimes submersed in water, and sometimes
in air. The horizontal dashed line in figure 2c shows a notional water level which imposes this
filling pattern as the spiral rotates. As we shall see, the assumption that the plugs of water remain
intact at all times is also necessary when it comes to modelling the pump.

Our main interest here is to devise a mathematical model of the hydrostatic behaviour of
the Wirtz pump, and we take a dynamical systems approach. We first explain the assumptions
under which our model of the pump is valid. The model itself turns out to be a two-dimensional,
nonlinear map which relates the air pressure and the configuration of the plugs of water in
two successive turns of the spiral. To write down the map, we need to consider carefully the
computation of arc lengths of sections of helices and spirals; we suspect that one reason for the
focus on helices in earlier literature is the extra computation needed in the spiral case. This leads to
many of our results being numerical. We further explain (i) how the pump is self-regulating, that
is, how, within limits, it will automatically produce the required output pressure; (ii) an approach
to devising, approximately, a spiral that gives the maximum output pressure, subject to given
constraints, which we name the ‘quasi-optimal spiral’ (QOS), and (iii) how to model ‘air lift’ in
a simple case.

There is some early literature on the Wirtz pump. For instance, the study of Gregory [2] is a
reference to the spiral, as opposed to the helical pump, which anticipates, by 200 years, several
of the problems we consider here. The author not only addresses the question of the spiral that
generates the maximum pressure, but also realizes the potential of air lift—a direct and useful
consequence of the fact that the input to and output from the pump must consist of alternating
plugs of air and water. The other early references, [3,4], add detail, and it is interesting to read of a
water-powered Wirtz pump installed in Arkhangelsk in 1784, which [4] claims ‘raised a hogshead
of water in a minute to an elevation of seventy-four feet, and through a pipe seven hundred and
sixty feet long’. These figures are impressive—a hogshead being 200–300 l, the power required
just to raise this quantity of water with no friction would be at least 750 W.

More recent works [5–8] concentrate mostly on the helical pump. An experimental approach
is taken in [5]. The helix is rotated at rates of up to 120 r.p.m., hence in this study, many different
dynamical effects are likely to be important. The device is designed to be rotated by integral vanes,
not by attachment to a waterwheel. The thesis [7] concentrates on both modelling the system and
carrying out experiments. Interestingly, the adiabatic equation, pvγ = const. [9], is used to model
the compression of air in the pump, rather than Boyle’s Law [9]. Among much else, data are given
on failure modes (for example, spillover, in which water in one turn of the helix spills over into the
next turn; bubbling, in which air bubbles up through a plug of water; and blow-back, in which the
system becomes unstable and water is forcibly ejected from the intake.) In [6], we find a summary
of the main results in [7] as well as a brief treatment of air lift.

A different application is described in [8]. Both helical and spiral cases are briefly discussed,
but Belcher’s interest is in using the spiral pump concept for the removal of floating pollutants
from the surface of the sea.

The website http://lurkertech.com/water/, where [1] can be found, is a mine of practical
information and experimental and historical data relating to water-powered pumps. The Wirtz
pump is dealt with from an experimental viewpoint in [1], which reports on the performance of
a large experimental pump. There is also a link to a most instructive video [10] showing a helical
pump built from translucent pipe, in which the positioning of the plugs of water can be seen.
The pipe used in the video is about the same size as that used in figure 1.

The rest of the paper is organized as follows. In §2, we discuss the assumptions upon which
our model is based, show how we estimate volumes of curved pipe, and give a table of realistic
parameter values—‘realistic’ because they are taken from the pump shown in figure 1. In §3, we
derive the two-dimensional map referred to above, in a form that is valid for a class of spirals.
In §4, we introduce the concentric circle approximation (CCA), which gives us a starting point
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for tackling the problem of devising an approximate pressure-maximizing spiral, the QOS. We
also formally prove, in the CCA, the existence of a maximal pressure spiral, and we derive
a functional form for the QOS based on the CCA. Section 5 compares the Archimedean and
quasi-optimal spirals and presents several additional numerical results. Section 6 discusses the
phenomenon of air lift and derives an approximate expression for it. We then draw conclusions
and discuss some open problems in §7.

2. Preliminaries

(a) Assumptions
To model the Wirtz pump, which we assume to consist of a slow-turning spiral of pipe in a
vertical plane, the pipe containing alternating plugs of water and air, we need to make several
assumptions, which we now list and comment upon. We name the assumptions where we need
to refer to them again.

(i) The plug assumption. This is the main assumption and without at least some version of
it, it would be unclear how to model the pump. The assumption is that the plugs of
water move within the pipe but remain intact, that is, they remain as single plugs and
no air passes through them, no matter how the pipe is orientated. Several parameters (in
particular, the pipe inner diameter and the surface tension and viscosity of water) affect
the validity of this assumption. A video of an experimental helical pump can be found
at [10], which shows that the plug assumption appears to apply to the translucent pipe
used in that case.

(ii) Pascal’s Law. The pressure difference,�p, between two points a vertical distance�h apart
in an incompressible, stationary fluid of density ρw is given by �p = ρwg�h, where g is
the acceleration due to gravity.

(iii) Boyle’s Law [9]. This states that, for a fixed quantity of an ideal gas at constant temperature,
pv = const., where p and v are the pressure and volume, respectively. The assumption that
the pump is slow-turning means that the compression of air, assumed ideal, takes place
at roughly constant temperature. An alternative to Boyle’s Law, the adiabatic equation,
pvγ = constant [9], is used in [7], with γ = 1.15.

(iv) Periodicity. The arrangement of plugs looks identical after one rotation of the spiral—that
is, we assume that any transient dynamical behaviour has decayed and the system is in a
steady state.

(v) Air has negligible density (ρair ∼ 1 kg m−3, whereas ρw = 1000 kg m−3).
(vi) For the conditions in the pump, an insignificant quantity of air dissolves in the water.

(vii) We make several approximations relating to the volume of spiral and helical pipes—see
§2b.

We now comment briefly on these assumptions. The most important of them is the plug
assumption, and its validity depends critically on the inner diameter of the pipe used. Evidence
that this assumption holds for the parameters in table 1 is seen in [10], in which the inner
diameter of the pipe used appears to be similar to ours. Pascal’s Law is certainly valid in this
situation, but it is arguable which one of Boyle’s Law (constant temperature) and the adiabatic
equation (no transfer of heat) better describe the compression of air here: in reality, the truth
probably lies between the two (i.e. γ ≈ 1). The periodicity assumption is plausible, and the
negligibility of the density of air is certainly true. As the water is taken from a stream, it will
be saturated with air at atmospheric pressure, but more will dissolve within the pump because
the pressure there is higher. However, dissolving of air in water takes time, and the area of water
exposed to air within the pump is small (∼2 × 10−4 m2—table 1), so this assumption is likely
to hold too.
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Table 1. Names, symbols and numerical values for the parameters for a practical Wirtz pump consisting of an Archimedean
spiral.

universal parameter values

name symbol numerical value

acceleration due to gravity g 9.81 ms−2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

standard atmospheric pressure p0 1.01 × 105 N m−2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

density of water ρw 1.0 × 103 kg m−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

density of air ρair 1.2 kg m−3

parameter values for a practical pump

number of turns N 12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

inner radius of pipe rin 7.6 × 10−3 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cross-sectional area of pipe a= π r2in 1.82 × 10−4 m2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pipe outer diameter d 2.0 × 10−2 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

archimedean spiral constant b= d/2π 3.18 × 10−3 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pump radius R 0.6 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pump parameter α = ρwgR/p0 0.0583
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

air lift parameter μ= ρwg/p0 0.0971 m−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rotation rate — 6–8 r.p.m. (depends on stream conditions)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Helices and spirals
To model the Wirtz pump, we will need an estimate of the internal volume, which we refer to from
now on just as ‘volume’, of sections of curved pipe. It will be convenient to use polar coordinates
(ρ,ψ) to define the curve taken up by the axis of the pipe, and we shall do this by specifying
the radius ρ as a function of angle ψ ≥ 0. It turns out that we will need to compute the volume
contained between two angles, and also the angle given the volume. That is, we seek a function
v(ψ), which gives the volume between 0 and ψ , and also its inverse.

We shall concentrate mainly in this paper on pumps that consist of pipe wound into a
spiral, which we define as a planar curve, described in polar coordinates by a smooth, positive,
monotonically decreasing function ρ(ψ), for ψ ∈D, where D = [0,ψmax) is a finite or semi-infinite
subset of R. Such a strict definition turns out to be convenient for this work. Note that our spirals
move towards the origin as ψ increases. It is often convenient to write ρ(ψ) = Rr(ψ), where R has
the dimensions of length and r(ψ) is a dimensionless function of ψ , with r(0) = 1. The special case
of a helical pipe is defined by ρ(ψ) = const.

We observe now that, in the helical case, and in spiral cases when, for some ψ0 ∈D, ρ(ψ0) −
ρ(ψ0 + 2π )< d, where d is the outer diameter of the pipe, the spiral cannot be wound in a plane
without the pipe intersecting itself. In such cases, we imagine it instead to be wound around
an appropriate solid of revolution. The length of such a curve will, of course, differ from the
planar case, but the difference is negligible provided that ρ� d. As a guide, consider a tightly
wound helix in which successive turns touch. Then, approximating the actual length L of one
helical turn of radius R and pitch d as the circumference 2πR of a circle of radius R gives
L/2πR =

√
1 + d2/4π2R2. (We have approximated L as the hypotenuse of a right-angled triangle

with adjacent and opposite sides of length 2πR and d, respectively.) For this to be in (relative)
error by 0.1% gives L/2πR = 1.001, and for d = 2 × 10−2 m (table 1), we have that R ≥ 0.071 m.
In practice, all turns have considerably greater radius than this. For example, the radius of the
smallest turn in figure 1 is 0.36 m.
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Figure 3. Pressures (pi) and various angles used in modelling the Wirtz pump. Plugs of water are shown in black, and of air,
in white.

We now make the approximation that the volume of a length of curved pipe of inner cross-
sectional area a, whose axis lies along a given space curve C, is given by v(ψ) = aσ (ψ), where
σ (ψ) is the arc length of C as a function of ψ . This, too, will be a good approximation, provided
that the radius of curvature of C is nowhere too small. We refer to this hereafter as ‘the volume
assumption’.

As an example of a spiral case, let us consider the Archimedean spiral, in which ρ(ψ) = Rr(ψ) =
R(1 − bψ/R). Here, R, which we refer to as the pump radius, is the distance from the origin to the
centreline of the pipe at ψ = 0, hence, as r(ψ) is decreasing, R is the radius of the smallest circle,
centred at the origin, that contains the centreline of the spiral; and b � R is a positive constant
(figure 3). This is the most tightly wound, strictly planar spiral possible if b = d/2π . For this spiral,

σ (ψ) =
∫ψ

0

√
(R − bξ )2 + b2 dξ = b

2
ln
(

R + e(0)
R − bψ + e(ψ)

)
+ Re(0) − (R − bψ)e(ψ)

2b
, (2.1)

where e(ψ) =
√

(R − bψ)2 + b2. For other spirals, σ (ψ) = ∫ψ
0

√
ρ2 + (dρ/dξ )2 dξ may or may not be

available in closed form. Even in the Archimedean case, there is no simple expression for σ−1(x).

(c) Realistic parameters
Table 1 gives a list of realistic parameter values that apply to the Wirtz pump shown in figure 1.

3. Derivation of the mapping
As mentioned in the Introduction, we model the pump as a dynamical system: our aim is to derive
a function (a mapping) that maps a pair of variables from their values in one turn of the spiral
to those in the next. As we shall see, the mapping depends on two dimensionless parameters,
φ ∈ [0,π ] and α > 0, both defined below.
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We consider first the general spiral case ρ(ψ) = Rr(ψ), and then specialize this to the helical
case by setting ρ(ψ) = R const. Figure 3 shows two short sections of the pipe, these being parts of
the N-turn spiral that forms the Wirtz pump. Directions such as ‘clockwise’, ‘left’ and so on refer
to this figure. The turns are numbered from i = 1 to N, with i = 1 corresponding to the outermost
turn—this turn has an open end, the intake. Hence, in the ith turn, ψ ∈ [2(i − 1)π , 2iπ ).

Within the pipe, plugs of water and air are shown in black and white, respectively. The pump
rotates anticlockwise about point O and the angle ψ ∈ [0, 2Nπ ] is measured clockwise from line
OB. This line passes through O, the left-hand (clockwise) end of the first plug of water, plug 1,
and the open end of the pipe. These three points are collinear simply because we choose to define
the first turn to contain the whole of plug 1, the rest of the turn being filled with air: effectively,
we define the open end of the pipe, which is at ψ = 0, to be collinear with the other two points.
Hereafter, when we refer to a ‘plug’, we mean a plug of water and in figure 3, plugs 1, i and i + 1
are shown. We assume that all the plugs have the same arc length w, which is reasonable, because
we expect the amount of water collected not to change between turns of the pump. We then define
anglesψi, i = 1, . . . , N, which are the angles between line OB and the midpoint of plug i, measured
clockwise along the pipe. Hence, 0<ψ1 <ψ2 · · ·<ψN < 2Nπ and, importantly, these angles are
not measured modulo 2π .

For convenience, we also introduce another set of angles θi, i = 0, . . . , N − 1, and these are
measured anticlockwise from the line OA, where point A is vertically below O. They are defined
such that θi−1 is the angle between OA and the midpoint of plug i. Naturally, there is a relation
between ψi and θi−1—see equation (3.2).

The angle subtended by the ith plug at O is equal to φ−
i + φ+

i , where φ−
i and φ+

i , both assumed
positive, are the angles subtended by the right- and left-hand halves of the plug, respectively. The
arc length of both of these half plugs is w/2, and so, by the definition of ψi, σ (ψi + φ+

i ) − σ (ψi) =
σ (ψi) − σ (ψi − φ−

i ) = w/2. It is convenient to introduce a dimensionless arc length, s(ψ), defined
by s(ψ) = σ (ψ)/R, so s−1(x/R) = σ−1(x), and in terms of this

s(ψi + φ+
i ) − s(ψi) = s(ψi) − s(ψi − φ−

i ) = w
2R

:= φ. (3.1)

Angles φ+
i and φ−

i are not equal in general because of the spiral geometry. From the definitions
above, the angle AOB is β0 := φ+

1 − θ0, and hence, from figure 3,

ψi = 2iπ − β0 − θi−1. (3.2)

If li is the length of air between plugs i and i + 1, with l0 being the length of air in the first turn,
then we have

li
R

= s(ψi+1 − φ−
i+1) − s(ψi + φ+

i ) with
l0
R

= s(2π ) − w
R

= s(2π ) − 2φ. (3.3)

By the volume assumption, §2b, the volume of the air between the right-hand end of plug i + 1
and the left-hand end of plug i is ali; we write its pressure as pi.

We now derive a pair of difference equations that together describe the hydrostatic behaviour
of the Wirtz pump. Our starting point is Pascal’s Law,�p = ρwg�h. Considering plug i in figure 3,
the difference in height between its right and left ends is

�hi = −ρ(ψi − φ−
i ) cos(φ−

i + θi−1) + ρ(ψi + φ+
i ) cos(φ+

i − θi−1) = (pi − pi−1)
ρwg

.

Hence, letting qi = pi/p0 be the relative pressure, and using equation (3.2) to eliminate θi−1, we
have

qi = qi−1 + α[r(ψi + φ+
i ) cos(ψi + φ+

i + β0) − r(ψi − φ−
i ) cos(ψi − φ−

i + β0)],
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where α = ρwgR/p0 and r(ψ) = ρ(ψ)/R. Finally, from equation (3.1), we have that ψi + φ+
i =

s−1(s(ψi) + φ) and ψi − φ−
i = s−1(s(ψi) − φ), and, using these in the above, we obtain, for

i = 1, . . . , N,

qi = qi−1 + α(r[s−1(s(ψi) + φ)] cos[s−1(s(ψi) + φ) + β0]

− r[s−1(s(ψi) − φ)] cos[s−1(s(ψi) − φ) + β0]). (3.4)

This equation alone is insufficient to describe the system completely. We therefore derive a
second difference equation, relating angles, for which we use Boyle’s Law in the form pivi = p0v0,
for i = 1, . . . , N, where p0 is the ambient pressure and v0 = al0. Hence, li = l0/qi, and so from
equation (3.3), we have

s(ψi+1 − φ−
i+1) − s(ψi + φ+

i ) = l0
Rqi

.

Again from equation (3.1), we have that s(ψi + φ+
i ) = s(ψi) + φ; and, with i replaced by i + 1, we

also have s(ψi+1 − φ−
i+1) = s(ψi+1) − φ. Therefore, using equation (3.3) to eliminate l0,

ψi+1 = s−1
(

s(ψi) + 2φ + s(2π ) − 2φ
qi

)
, i = 1, . . . , N − 1. (3.5)

The operation of the pump is thus described by equations (3.4) and (3.5), which together comprise
a two-dimensional, autonomous discrete dynamical system with state vector (qi, ψi). The two
initial conditions are q0 and β0 = φ+

1 − θ0, with the former always being taken to be equal to 1,
because the pressure in the first turn is p0, the ambient pressure. The system can be seen to be
controlled by two dimensionless parameters, α = ρwgR/p0 ∈ [0, ∞) and φ = w/2R ∈ [0,π ], which
is half the angle subtended at O by a plug of water of length w in a pipe bent into a circle of radius
R. By definition, α can in principle be made as large as we please by increasing R; in practical
terms, φ, which is proportional to α, can be adjusted by varying the depth of submersion of the
spiral, or, more easily, by widening out the open end of the pipe into a scoop. For the practical
pump, w ≈ 0.96 m, giving φ ≈ 0.8.

We can also use equation (3.1) to derive the expressions for the angles φ±
i , should they be

needed:
φ+

i = s−1(s(ψi) + φ) − ψi and φ−
i =ψi − s−1(s(ψi) − φ). (3.6)

To generate a set of values of (qi,ψi), we need the initial conditions (q0,β0) and also the fact
that, by definition, ψ1 is the angle between line OB and the midpoint of plug 1 in figure 3, thus
giving ψ1 = s−1(s(2π ) − φ). This, with equation (3.2), gives β0 = 2π − s−1(s(2π ) − φ) − θ0. From
these, we can find q1 from equation (3.4), and, knowing q1, we can use equation (3.5) to find ψ2.
Hence, we can now find q2, and so on. We can thus compute (qi,ψi) for all i.

Although we do not study the helical case further here, for the sake of completeness, we
derive the mapping that describes it. In this case, ρ(ψ) = Rr(ψ) = R and φ±

i = φ = w/2R are
both constants. Also, ψi = 2iπ − φ + θ0 − θi−1, l0 = R(2π − 2φ) and β0 = φ − θ0. Using these in
equations (3.4) and (3.5) gives

qi = qi−1 + 2α sinφ sin θi−1

and θi = θi−1 + 2(π − φ)
(

1 − 1
qi

)
.

⎫⎪⎬
⎪⎭ (3.7)

We give some results for the mapping in the Archimedean and other spiral cases in §5.

4. An approximate pressure-maximizing spiral

(a) The concentric circle approximation and the 3 o’clock spiral
It is easy to see that the spiral that produces the maximum peak pressure consists of a set of N
D-shaped turns connected in series, with the vertical sections being full of water and all having
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length w; and the curved parts successively decreasing in length according to Boyle’s Law, and
being filled with air. Such a spiral would give a peak pressure, qN , of Nρwgw for one particular
orientation of the spiral, but the pressure would be much reduced in other orientations: qN

would, in other words, be far from constant as the spiral rotates. In practice, variable pressure
is undesirable, because, among other things, plugs in the delivery pipe, which takes water to the
destination, would move backwards as well as forwards, thereby dissipating energy, and also, the
torque required to turn the pump would vary with orientation.

We now look at a heuristic argument that leads to an approximation to a notional spiral which,
for given R, w and N, gives the maximum output pressure, qN , and, moreover, this pressure is
constant as the spiral rotates. We then transform this notional spiral into an actual one, for which
the output pressure is both close to maximal and close to constant. Our argument is based on an
approximation and an assumption.

The approximation we name the ‘concentric circle approximation’ (CCA), and in it we
represent the spiral as a set of N concentric circles, each centred on O, with the radius of the
ith circle being ρi = Rri. For convenience, we refer to the resulting pipe shape as the ‘CCA spiral’,
even though it is only notionally a spiral.

The assumption is that the angles θi between vertical line OA in figure 3, and the centres of the
plugs, for all i, are equal to π/2, and we refer to any spiral with this configuration of plugs as a ‘3
o’clock spiral’. The reasoning behind this plug positioning is that, in the CCA at least, �hi, which
is the length of the projection of each plug onto the vertical axis, is a maximum. By Pascal’s Law,
the difference between qi and qi−1 is therefore maximized, and so qN is maximized. This is proved
rigorously in theorem 4.2.

The relative pressure in the ith turn is qi, i = 0, . . .N, with qN being that at the high-pressure
end of the Nth plug (i.e. the output pressure). As before, q0 = r0 = 1. As we have θi = π/2, we can
now derive recursion formulae for qi and ri, the latter defining the CCA spiral.

The details are as follows. The projection of the ith plug onto the vertical axis has length �hi =
2Rri sin(φ/ri), where φ/ri is the angle subtended at O by half the ith plug. Pascal’s Law then gives

qi+1 = qi + 2αri sin
φ

ri
, (4.1)

where, as before, α = ρwgR/p0 and so 2α = 0.1166.
Now consider the outermost turn, i = 0, which has scaled radius r0 = 1. Letting li be the length

of the air plug in turn i, we have l0 = 2πR − w. Boyle’s Law then gives li = l0/qi. Now, from the
circumference of the ith turn, we find that li + w = 2πRri = l0/qi + w, and hence, with r∞ = φ/π =
w/2πR, we find

ri = 1 − r∞
qi

+ r∞. (4.2)

Equations (4.1) and (4.2) together allow us to compute, respectively, the relative pressures and
the radii of successive turns in the concentric circle approximation to the pressure-maximizing
spiral, given the parameter values and the fact that q0 = 1. Assuming fixed R and N, the only free
parameter is φ = w/2R. Two natural questions then arise: (i) is there an arrangement of plugs that
gives a higher output pressure, qN , than that of the 3 o’clock spiral? and (ii) does there exist a
value of φ, φ∗ say, that, given that θi = π/2 for all i, results in a maximum qN? We examine the first
of these questions in the next section.

(b) Proof of output pressure maximality
The derivation of the following system is as in §4a, but with the θi = π/2 replaced by θi = π/2 + ηi.
The variables η1, η2, . . . , ηN measure the deviation from a 3 o’clock spiral. In non-dimensional
variables ri and qi, equation (4.1) becomes qi+1 = qi + 2αφ sinc(φ/ri) cos ηi+1 for i = 0, . . . , N − 1.
Here, sinc denotes the function sinc s := sin s/s with its singularity at s = 0 removed. Note that q1
depends only on η1, q2 only on η1 and η2, and so on.
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Additionally, as ri = (1 − r∞)/qi + r∞, the dependence of ri on η1, η2, . . . , ηi is implicit in the
dependence of qi on those variables.

Lemma 4.1. Let r∞ = φ/π < 1 and define, for r∞ < r ≤ 1, the function

Z(r) = 1 − r∞
r − r∞

+ 2αφ sinc
(
φ

r

)
.

In addition, for each v ≥ 1, define

d(v) = Z
(

1 − r∞
v

+ r∞
)

.

Then, provided that 2απ (1 − r∞) ≤ 1, Z(r) is decreasing on r∞ < r ≤ 1 and d(v) is increasing for v ≥ 1.

Proof. We calculate

Z′(r) := dZ
dr

= − 1 − r∞
(r − r∞)2 + 2α

(
sin

(
φ

r

)
−
(
φ

r

)
cos

(
φ

r

))
. (4.3)

As φ/r<π and the function u �→ sin u − u cos u is increasing for 0 ≤ u ≤ π , an upper bound for
the rightmost term in (4.3) is 2απ . The leftmost term is bounded above by −(1 − r∞)−1, so that
Z′(r) ≤ 0, provided −(1 − r∞)−1 + 2απ ≤ 0. The latter easily rearranges to the condition in the
statement of the lemma.

Let us now assume that this condition holds. That d as defined is increasing is now easy to see.
Indeed,

v2d′(v) = −(1 − r∞)Z′
(

1 − r∞
v

+ r∞
)

,

where the argument, a, say, of Z′ on the right lies between r∞ and 1 and hence, by the previous
part of the proof, Z′(a) ≤ 0. Thus d′(v) ≥ 0. Alternatively, simply note that, for v1 ≥ v2 ≥ 1, we have

r∞ ≤ 1 − r∞
v1

+ r∞ ≤ 1 − r∞
v2

+ r∞ ≤ 1,

and hence, as Z is decreasing, we obtain d(v1) ≥ d(v2). �

The next result shows that, within the class of CCA spirals, the maximum relative output
pressure is uniquely attained by the so-called 3 o’clock spiral. The proof is shortened somewhat
by the following conventions. Firstly, by ri we mean ri = ri(η1, . . . , ηi) and η(i) = (η1, . . . , ηi) will
denote the argument of ri. The same convention will apply to each qi. A natural consequence of
this notation is that ri(η(i−1), 0) will denote ri evaluated at the i-tuple (η1, . . . , ηi−1, 0), and also that
the i-tuple consisting of i entries of 0 is written 0(i).

Theorem 4.2. In the system

qi+1 = qi + 2αφ sinc
(
φ

ri

)
cos ηi+1 i = 0, . . . , N − 1

ri = 1
qi

(1 − r∞) + r∞ i = 0, . . . , N

with r0 = q0 = 1, and provided that 2απ (1 − r∞) ≤ 1, it holds that

qN(η(N)) ≤ qN(0(N)), (4.4)

with equality if and only if ηi = 0 for i = 0, . . . , N.
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Proof. First note that

qN = qN−1 + 2αφ sinc
(

φ

rN−1

)
cos ηN ≤ qN−1 + 2αφ sinc

(
φ

rN−1

)
.

By rearranging (4.2), we can write qN−1 = (1 − r∞)/(rN−1 − r∞), so that

qN ≤ 1 − r∞
rN−1 − r∞

+ 2αφ sinc
(

φ

rN−1

)
(4.5)

= Z(rN−1). (4.6)

For later use, we record the fact that Z(rN−1) = qN(η(N−1), 0).
Now note that rN−1(η(N−2), 0) ≤ rN−1, which is true because qN−1 is maximized when ηN−1 = 0,

so that by applying lemma 4.1, it follows that Z(rN−1) ≤ Z(rN−1(η(N−2), 0)). Next, note that

rN−1(η(N−2), 0) = 1 − r∞
qN−2 + 2αφ sinc(φ/rN−2)

+ r∞ (4.7)

= 1 − r∞
Z(rN−2)

+ r∞. (4.8)

Hence Z(rN−1) ≤ Z((1 − r∞)/Z(rN−2) + r∞) = d(Z(rN−2)). Note that qN(η(N−2), 0, 0) = d(Z(rN−2)).
Now rN−2(η(N−3), 0) ≤ rN−2, because qN−2 is maximized when ηN−2 = 0, and hence (again

applying lemma 4.1) Z(rN−2) ≤ Z(rN−2(η(N−3), 0)). As both sides of the latter inequality are larger
than 1 (each being a possible value of the relative pressure qN−1), lemma 4.1 again applies, and
we must have

d(Z(rN−2)) ≤ d(Z(rN−2(η(N−3), 0))).

Drawing the preceding steps together gives

Z(rN−1) ≤ d(Z(rN−2)) ≤ d(Z(rN−2(η(N−3), 0))). (4.9)

Now one can replace rN−2(η(N−3), 0) with an expression like the one in (4.7) but with N − 3 in
place of N − 2, and then repeat the argument above to obtain d(Z(rN−2(η(N−3), 0))) = d(d(Z(rN−3))).
Coupling this with (4.9) gives

Z(rN−1) ≤ d(Z(rN−2)) ≤ d(d(Z(rN−3))), (4.10)

which, when iterated, yields
Z(rN−1) ≤ d(j−1)(Z(rN−j)) (4.11)

for j = 1, 2, . . . , N. Here, d(j−1)(s) represents the map d applied j − 1 times to s. At each stage, the
construction gives us

qN(η(N−j), 0(j)) = d(j−1)(Z(rN−j)). (4.12)

Using (4.12), (4.6) and (4.11) gives qN ≤ d(N−1)(Z(r0)) = qN(0(N)), which concludes the proof of (4.4).
To see that qN < qN(0(N)) with equality if and only if ηi = 0 for i = 1, . . . , N, first note that Z is

strictly decreasing on (r∞, 1], as can be seen by looking at the condition required for Z′(r) = 0 in
the proof of lemma 4.1. It follows from this that each inequality

Z(rN−j) ≤ Z

(
1 − r∞

Z(rN−j−1)
+ r∞

)
,

holds strictly unless ηN−j = 0 for each 1 ≤ j ≤ N − 1. From the first line of the proof we also know
that qN = Z(rN−1) only if ηN = 0. Hence qN is uniquely maximized when η1 = · · · ηN = 0. �

We point out that the optimal spiral calculation applies provided that φ is such that
2α(π − φ) ≤ 1. In our case, this holds for all φ ∈ [0,π ] because 2απ ∼ 0.3663. Thus, the
‘optimal spiral’ would be the 3 o’clock spiral with φ = φ∗ as in §4a. We also remark that the
3 o’clock spiral is a global pressure maximizer regardless of the initial conditions.
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(c) The quasi-optimal spiral
Clearly, the CCA proposed in §4a does not even give a spiral—it gives instead a set of unconnected
concentric circles of pipe, with the property that, were these circular pipes somehow connected
together in order of decreasing radius, the output pressure qN would be a maximum. In this
section, we describe an interpolation scheme that turns the optimal CCA spiral into a true spiral,
which we refer to as the ‘quasi-optimal spiral’ (QOS), and which we assume produces an output
pressure which is ‘close to maximal’. Specifically, we seek a smooth, monotonically decreasing
function, r(ψ), such that r(2iπ ) ≈ ri, i = 0, . . .N, with ri being given by equations (4.1) and (4.2).
We then use this r(ψ) to compute the output pressure numerically, using the mapping, equations
(3.4), (3.5), as set out in §3.

We take the following heuristic approach, starting from equations (4.1) and (4.2). With r∞ =
φ/π , equation (4.2) gives qi = (1 − r∞)/(ri − r∞). Furthermore, defining xi = ri − r∞, equation (4.1)
gives

xi+1 = F(xi) = xi

1 + γ xi(xi + r∞) sin(π/(1 + xi/r∞))
= xi − γπx3

i + O(x5
i ), (4.13)

where γ = 2α/(1 − r∞)> 0. Making the ansatz xi = (2γπ i + x−2
0 )−1/2, we find, for large i, the

following asymptotic expansion:

xi+1 − xi + γπx3
i ∼ 3

16

√
2
γπ

i−5/2 + O(i−7/2),

terms of order i−1/2 and i−3/2 cancelling out. What is important here is that the above is consistent
with xi tending to zero as i−1/2 for large i. This suggests that we model the required smooth r(ψ),
which interpolates the ri values, by

r(ψ) = (1 − r∞)

√
1 + b1ψ + · · · + bD−1ψD−1

1 + a1ψ + · · · + aDψD + r∞ = (1 − r∞)

√
B(ψ)
A(ψ)

+ r∞, (4.14)

for suitable D and constants a1, . . . , aD and b1, . . . bD−1, this expression giving r(0) = 1 and tending
to r∞ as ψ−1/2 for large ψ , as the above suggests it should. Other possibilities for r(ψ) could
be considered, but for the practical parameter values, this model works remarkably well, even
(especially) for D = 2—see below.

Now we have a suitable r(ψ), we can compute scaled arc lengths s(ψ) by s(ψ) =∫ψ
0

√
r2 + (dr/dt)2 dt. The inversion of this requires a numerical algorithm, and the following,

based on Newton–Raphson [11], is effective for such a problem.

Inversion Algorithm. Let h(x)> 0 for x ≥ 0 be a positive, monotonically decreasing function of
x, and let S = ∫ψ

0 h(x)dx, with S∞ = ∫∞
0 h(x)dx. Then the following iterative scheme can be used to

find ψ = limi→∞ ψi, given S ∈ [0, S∞):

ψi+1 =ψi + ξi

h(ψi)
, ξi+1 = ξi −

∫ψ i+1

ψi

h(x) dx with ψ0 = 0, ξ0 = S.

This is derived from the Newton–Raphson iteration for solving f (ψ) = 0 for ψ , in which an
improved estimate of the solution, ψi+1, is computed from ψi via ψi+1 =ψi − f (ψi)/f ′(ψi). For our
problem, f (ψ) = ∫ψ

0 h(x) dx − S, and therefore f ′(ψ) = h(ψ). Defining ξi = S − ∫ψi
0 h(x) dx, we have

that ξi+1 = ξi − ∫ψi+1
ψi

h(x) dx. This is one half of the algorithm. Applying Newton–Raphson directly
to the problem f (ψ) = 0, we have

ψi+1 =ψi − 1
h(ψi)

(∫ψi

0
h(x) dx − S

)
=ψi + ξi

h(ψi)
,

which gives the other half of the algorithm. By definition, ψ0 = 0 implies that ξ0 = S, and we take
these as our initial conditions. This completes the derivation.
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In this form, the algorithm is efficient: not only is it quadratically convergent close to the
solution, but the range of the integral to compute ξi+1 from ξi shrinks with increasing i, and this
is advantageous given that this integral will usually need to be computed numerically.

5. Numerical results

(a) The Archimedean spiral
We simulate the behaviour of a pump consisting of an Archimedean spiral using equations (3.4)
and (3.5), with s(ψ) = ∫ψ

0

√
r2 + (dr/dt)2 dt, where r(t) = 1 − bt/R. In figure 4, several results

are given for N = 12. On the left, we show a plot of the maximum output pressure, qN(φ) =
maxθ0∈[−π ,π] qN(θ0,φ) as a function of φ. We have taken the spiral to consist of exactly 12 turns,
and have computed the output pressure for only as many complete plugs as fit into this spiral:
if the last plug were to project beyond the end of the spiral by even a small amount, this plug
is discounted, and the last turn is assumed to be filled with air. This number of whole plugs is
shown on the figure, which makes an important point: by varying θ0, and thereby changing the
configuration of the plugs, any output pressure between 1 and the maximum possible can be
produced. This justifies our claim that the pump is self-regulating because it will automatically
choose a configuration to deliver the required output pressure, provided that this is no more than
the maximum possible.

The middle and right figures apply to the situation when φ = φ∗ = 1.27, giving q∗
12 = 1.93,

the maximum pressure. The middle figure shows the deviations from a 3 o’clock spiral, ηi, in
the Archimedean case, and on the right we show the configuration of plugs for the maximum
pressure. The latter two figures should be contrasted with their counterparts in the quasi-optimal
case shown in figure 6.

(b) The CCA and quasi-optimal spirals
It is straightforward to investigate the performance of the CCA spiral. Using equations (4.1)
and (4.2), we fix R = 0.6 and compute qi, ri, i = 0, . . . , 12 for a range of values of φ. From this,
we estimate φ∗ and q∗

N . With α = 0.0583, we find φ∗ = 1.38 and qN(φ∗) = 2.12 (figure 5).
We now show numerically how the discussion of a QOS in §4c works out in practice. The

approach is as follows: first, we use equation (4.13) in the form ri+1 = r∞ + F(ri − r∞), with r0 = 1,
to find ri, i = 1, . . . , N—this is the same as using equations (4.1) and (4.2). Then, for a reason
given later in this section, we fix D = 2 in equation (4.14), and use the method of least squares to
find the coefficients in polynomials A(ψ) = 1 + a1ψ + a2ψ

2 and B(ψ) = 1 + b1ψ . This requires the
minimization of

K(a1, a2, b1) =
N∑

i=0

[(ri − r∞)2A(2iπ ) − (1 − r∞)2B(2iπ )]2,

with respect to a1, a2 and b1. Differentiating K with respect to each of these parameters and setting
the result equal to zero gives three linear equations that can be solved for a1, a2 and b1. As r∞ =
φ/π depends on φ, note that a1, a2 and b1 must be recomputed every time φ is changed. In the
QOS, we find that φ∗ = 1.36 and q12(φ∗) = 2.07 (figure 5). These figures should be compared with
φ∗ = 1.38 and q12(φ∗) = 2.12 in the CCA case.

For φ = φ∗, r(ψ) is given approximately by

r(ψ) = 0.5674752

√
1 + 0.008260839ψ

1 + 0.04544979ψ + 5.037703 × 10−4ψ2 + 0.4325248, (5.1)

and this gives r(2kπ ) − rk ∈ [−3.5 × 10−5, 0.79 × 10−5] for k = 0, . . . , 12, with the most negative
error occurring for i = 1 and the most positive, for i = 5. The overall pipe length, s(24π ) = 36.4 m.

The value D = 2 is actually suggested by the least-squares procedure just described. For the
realistic parameter values at least, it often happens that, for D> 2, both A(ψ) and B(ψ) contain,
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Figure 4. (a) Maximum output pressure for givenφ, qN(φ)= maxθ0∈[−π ,π ] qN(θ0,φ), for an Archimedean spiral with N=
12 turns. The numbers show how many whole plugs fit into the 12-turn spiral for the given pressures. The maximum pressure
is q∗12 = 1.93 and occurs at φ = φ∗ = 1.27. (b) Angles ηi = θi − π/2 from the horizontal to the plug centres versus turn
number, i, forφ = φ∗. (c) Configuration of the 11 water plugs (thick lines) at maximum pressure.
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Figure 5. Comparisons of the CCA spiral and its smooth approximation, the QOS. Parameters are from table 1. In the QOS case,
there are always 12 plugs of water. (a) q12 versus φ using the CCA (dashed line) and QOS (solid line). (b) Relative pressures in
each turn forφ∗, the value ofφ that maximizes q12; CCA(+) and QOS (×). (c) The radius of each turn in the CCA forφ = φ∗

(filled circles) and the interpolated r(ψ ) from equation (5.1), (solid line).
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Figure 6. Behaviour of a smooth 12-turn, quasi-optimal spiral. (a) ηi = θi − π/2 versus i. (b) The position of the plugs
(thick arcs) in the pipe (thin curve), in this smooth spiral, when the maximum pressure, q12 = 2.07, is achieved. This occurs for
φ = φ∗ = 1.36.
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approximately, a common factor, by which we mean that A(ψ), B(ψ) have a factor of the form
(a − ψ), (b − ψ), respectively, with a ≈ b. (This is a numerical calculation, so we naturally do not
find a = b exactly.) This is not observed when D = 2 however, indicating that this is a good choice
for D.

In the smooth case, we no longer have that θi = π/2 for i = 0, . . . , N − 1—see figure 6 for a plot
of ηi = θi − π/2 versus i, as well as a plot of the spiral and the plugs of water.

6. Air lift and the delivery pipe
As the output from the pump consists of alternating plugs of water and air, it is also useful
to consider the behaviour of the delivery pipe—that is, the pipe connecting the pump to the
destination. Clearly, there will be alternating plugs of water and air in the delivery pipe too,
and so the height pumped to, �H, will be greater for a given pump pressure than if the delivery
pipe were full of water only. This additional height gain is known as ‘air lift’ [1] and we estimate
it here in the simple case that the delivery pipe is straight, of length L, making an angle Ω with
the horizontal (figure 7). In this section, it makes more sense to use actual arc length σ rather than
rescaled arclength s = σ/R.

Our objective here is to give an idea of the size of the air lift effect, and in order to do this, we
model the delivery pipe as shown in figure 7. We do this in the rather restricted way implied in the
figure, with its length L being exactly the length of M plugs of air and water, even though it makes
no difference to the pressures if the length of the highest plug of air differs from l0. We again make
the assumptions set out in §2a.

It is convenient to define the air lift parameter μ= ρwg/p0 = α/R (m−1). Pascal’s Law then
gives qi+1 = qi + μw sinΩ , so that

qi = 1 + iμw sinΩ , i = 0, . . . , M. (6.1)

Boyle’s Law relates lengths of air plugs to pressures, and as q0 = 1, we have, as before, that li =
l0/qi. Finally, considering the arc lengths σi, we have σ0 = l0, σ1 = w + l0 + l1, and in general, using
equation (6.1) and Boyle’s Law, we find

σi = iw + l0
i∑

j=0

1
1 + jμw sinΩ

. (6.2)

In this restricted model, we assume that l0 and w are defined by the pump, and hence are fixed.
We then compute the possible values of �H as follows:

(i) Choose Q, the input pressure to the delivery pipe, with Q ∈ [1, qmax], where qmax is the
maximum possible output pressure from the pump for the given w.

(ii) From equation (6.1), Q = qM = 1 + Mμw sinΩ . Define M0 = �(Q − 1)/μw� and choose an
integer M ≥ M0; for such a choice of M, 0 ≤ sinΩ = (Q − 1)/Mμw ≤ 1 defines Ω .

(iii) Then, from figure 7 and equation (6.2), we have L = σM−1 + w = Mw + l0
∑M−1

j=0 (1 +
jμw sinΩ)−1.

(iv) Finally, as �H(M) = L sinΩ , we have, after simplification, that

�H(M) = Q − 1
μ

⎡
⎣1 + l0

w

M−1∑
j=0

1
M + j(Q − 1)

⎤
⎦ . (6.3)

The first term in equation (6.3) is just Pascal’s Law for a vertical column of water of height
Mw sinΩ ; the second term is the air lift. With the expression for air lift in this form, it is
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Figure 7. A delivery pipe containingM plugs of water (black) alternating withM plugs of air (white), with relative air pressures
q0, . . . , qM−1. The length of the pipe is L and over its length it rises by a distance�H; it makes an angleΩ with the horizontal.
The arc length from the top of the pipe to the upper end of plug i, i = 0, . . . ,M − 1, is σi and the relative pressure at the
bottom of the pipe is Q= qM.

unclear how �H varies with M. Therefore, we approximate this expression by means of the
Euler–Maclaurin summation formula [11]. This states that

M−1∑
j=0

f (j) =
∫M

0
f (j) dj + 1

2
[f (0) − f (M)] + 1

12
[f ′(M) − f ′(0)] + O( f ′′′(M)),

and letting f (j) = [M + j(Q − 1)]−1, we have

M−1∑
j=0

f (j) = 1
Q − 1

ln Q + 1
2

[
1
M

− 1
MQ

]
− Q − 1

12

[
1

M2Q2 − 1
M2

]
+ O(M−4).

For large M, we then find
M−1∑
j=0

f (j) = ln Q
Q − 1

+ Q − 1
2MQ

+ O(M−2).

This expression gives a good approximation for the practical parameter values in table 1. For
instance, fixing M = 10 we have, for Q = 1.5, that the sum is 0.8278, whereas the Euler–Maclaurin
formula gives 0.8276; for Q = 2.0, the sum is 0.7188 and the approximation is 0.7181.

Hence, finally, we obtain

�H(M) = Q − 1
μ

[
1 + l0

w

(
ln Q

Q − 1
+ Q − 1

2MQ

)
+ O(M−2)

]
. (6.4)

It now becomes clear that to maximize �H for fixed Q, l0 and w, we should choose the minimal
value of M = M0 = �(Q − 1)/μw�. For the maximal pressure Archimedean spiral considered
earlier, this gives M0 = 7 so that �H = 19.8 m, of which 10.2 m, slightly more than half, is
attributable to air lift. Note also that�H(M) varies little with M—even limM→∞�H(M) = 19.3 m.

7. Conclusion and further work
We have derived a model to describe the steady-state, hydrostatic behaviour of the Wirtz pump,
which essentially consists of a spiral of pipe rotating in a vertical plane, the pipe being filled with
alternating plugs of air and water. The model is a two-dimensional nonlinear mapping that relates
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the positions of plugs of water, and the air pressures, in two successive turns. This model is good
for a large class of spirals.

Several interesting questions concerning the pump have been considered, among them:
how the pump self-regulates, automatically producing the required output pressure; how the
phenomenon of air lift significantly increases (doubles, in our example) the height to which water
can be pumped; and the design of a spiral that produces the maximal pressure, which varies
as little as possible as the spiral rotates, for given constraints. The last question has only been
partially answered. From a mathematical point of view, we have constructed a spiral that is close
to optimal in both the pressure and, intuitively, the constancy senses, but the derivation of a true
optimal spiral requires—and merits—further work.

This paper takes a purely hydrostatic approach and we have not studied the dynamics of the
pump. For instance, how the output pressure varies during one rotation of the spiral depends
critically on the function ρ(ψ), which defines the spiral, and will be important in the optimization
problem mentioned above. A variational approach to solving this could be considered. It is
possible to describe the output pressure of a spiral in terms of an integral functional, which, to
an extent, conforms to existing theory in the calculus of variations, but which also contains some
novelties. Coupling such a model to one that penalizes variation in the output pressure during
a rotation would be a natural next step, the results of which are not easy to anticipate.

Also of interest are how the torque required to rotate the pump varies with the configuration
of the plugs of water, and the phenomenon of ‘blowback’. The latter happens when the output
pressure requirement is too high. The water in the intake is then ejected at high speed as the
rest of the plugs rearrange themselves into a lower energy configuration—energy here being
the potential energy of the plugs of water, plus that stored in the compressed air between
the plugs.

As stated in §2a, the validity of our model rests on that of the plug assumption. A most
worthwhile experiment would be to build a Wirtz pump from transparent pipe, which would then
make it possible to see directly whether this is valid, as well as making visible the configuration
of the plugs of water as conditions vary. Although the pump has been known since the mid-
eighteenth century, or possibly much earlier, and the physics used in our description of it dates
from the seventeenth century, only comparatively recently has the computational technology
become available to enable the fast and accurate calculation of arc lengths that is needed in order
to model it.
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